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Competitive Dynamics and Self-Organization in Photorefractive
Systems

A Final Report
ONR Grant N00014-91-J-1212

I. Overview

Research for the period June 1992 to June 1993 has encompassed several wopics in colipelitive
r P F
dynamics and self organization in photorefractive systems:

1) Stability analysis of photorefractive circuits.
2) Spatio-temporal dynamics in a photorefractive ring oscillator.
3) Transverse instability of counterpropagating beams in photorefractive media.

A short synopsis of results in each of these areas is included in the rest of this section. while
additional details are given separately for each topic in the following sections.

It was demonstrated over the past several years that photorefractive ring resonators and circuits of
coupled photorefractive resonators are suitable for implementing a wide variety of competitive and
cooperative dynamics [1-7] including specifically. the bistable ring resonator with gain and loss
[1,2], "winner-takes-all” and "voting paradox dynamics” [3], a photorefractive flip-flop [4]. a
ring-resonator with history dependent feedback [5], and self-organizing feature extractors that
operate on frequency or time multiplexed spatial patterns [6,7]. These systems were demonstrated
experimentally before a full theoretical analysis was completed. We have now completed stability
analyses of the flip-flop [4], and the self-organizing feature extractor [6.7] that confirm the
experimental observations. A detailed analysis of the flip-flop [27] clarifies the role of the time
constants in the gain and loss media on the system stability. Analysis of a simplified model of the
feature extractor [8] shows that the desired stationary state corresponding to extraction of the input
patterns is stable. and all other stationary states are unstable. In the case of the feature extractor
numerical analysis has been used to study the time dependence of the transition to a self-organized
state. and the role of noise induced symmetry breaking in this system.

In order to study more complex self-organizing systems than the feature extractor we have moved
to an investigation of a single. transversely continuous ring resonator [9]. This resonator allows
for the self-organized formation of transversely continuous spatial patterns. whereas in the coupled
ring resonators the complexity of the self-organized pattern is limited by the number of coupled
rings. We choose to work with an imaging resonator that admits an arbitrary transverse mode as an
eigenmode. In this situation, where the passive optics play only a minor role in determining the



mode structure the impact of the nonlinear elements comes to the forefront.  Our mitial
experimental results demonstrated how photorefractive gain and loss, placed in Fourier conjugate
resonator planes. induce the continuum of transverse modes to collapse into a single localized
mode of near Gaussian form. Since the imaging ring has no optical axis the location of the
localized mode is arbitrary, and is seen to form at any point in the transverse plane of the resonator.
In fact, due to imperfect alignment of the resonator. the localized mode. or spot, is not stationary.
but rather drifts in the transverse plane [10]. This phenomena appears to be unique in the ficld of
nonlinear optics. Analytical and numerical studies of the resonator show that the rate of spot
motion is directly dependent on the amount of cavity misalignment.

Part of the motivation for studying nonlinear dynamics in photorefractive systems is the possibility
of implementing neuromorphic information processing systems. In this context the localized
¢xcitation in the photorefractive ring resonator represents the response of the information
processing system to an input pattern (the resonator pump beam). We have investigated the
response of an idealized resonator with no cavity misalignment to time multiplexed input patterns.
We find from numerical simulations that input patterns with a large degree of similarity lead to
resonator excitations lying close together. while dissimilar input patterns lead to resonator
excitations spaced far apart. It appears therefore possible to use this resonator concept to implement
a class of neural network algorithms due to Kohonen, known as topology preserving mappings

[11].

While the motion of the localized excitation is interesting in its own right as an example of novel
dynamical behavior, it is undesirable for implementing e.g. a topology preserving mapping that
should result in a stationary output when presented with a statistically stationary input. We have
therefore investigated various ways in which additional nonlinearities may be used to inhibit the
motion, while still allowing the mode to form at an arbitrary position. Most of this work has been
performed numerically using a 3-D simulation program that allows a wide variety of resonator
configurations to be investigated. In early June 1993 we succeeded in finding a configuration.
requiring one additional photorefractive crystal. that stabilizes the spot motion on the computer.
despite cavity misalignments. Work is now under way to demonstrate this experimentally.

In addition to the work on photorefractive ring resonators we have studied a more traditional topic
in nonlinear optics: the transverse modulational instability of counterpropagating waves. The
modulational instability is well known in nonlinear optics, dating back to some Soviet work from
the late 1970's [12]. The nonlinear stage of the instability results in the formation of transverse
patterns, including rings, squares and hexagons, and has been observed experimentally in atomic
vapors [13-15]. liquid crystals [16,17]. and quite recently in photorefractive media [18]. The
intrinsically slow dynamics of photorefractive media wnich simplifies time resolved measurements. po

and their low thresholds. which make the strongly nonlinear stage of the instability accessible. ._or. ,,,,,,,,

render them well suited to further experimental investigation of these phenomena. The likelihood !;5\;

that photorefractive media will come to contribute to better understanding of the nonlinear aspects 'ﬁ;'

of pattern formation in this system motivates the theoretical analysis of the instability threshold that o

we have undertaken as a first step towards analyzing the nonlinear stage of the instability. L
——— ]

The analysis 1s complicated in photorefractive media by the fact that the coupling constant is in w/
geacial complea, whereas it is purely real in the instantancous Kerr media that have been the ¢ gogas
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subject of previous theoretical work. A paper describing the instability threshold condition due to
the formation of transmission gratings in photorefractive media has been accepted for publication
[19]. A second theoretical contribution in this area that considers the reflection grating case which
was experimentally realized [ 18], 1s nearing completion [20].

I1. Stability analysis of photorefractive circuits

The analytical tools necessary for detailed analysis of the stability of photorefractive circuits based
on two-beam coupling can be found as an extension of the methods that were previously developed
for treating a number of four-wave mixing configurations in photorefractive media [28]. The
conceptual basis of the method is quite straightforward: perform a linear stability analysis about all
possible stationary solutions of the circuit under consideration. in order to isolate the stable
solutions. The mechanics of carrying this program out becomes involved as the complexity of the
circuits increases. The analysis is lengthy because the steady state solutions almost always involve
nonlinear variations of the optical fields and photorefractive index gratings. Thus the linear
perturbation analysis must be performed about a nonlinear steady state.

The simplest configuration we wish to analyze is the dynamics of two beam coupling. which 15
described by the equations

(1.1

where s and p are the amplitudes of the signal and pumping beams respectively, g is the amplitude
of the grating. T is the coupling constant, T I;' is the characteristic time constant of the medium
and It = |s|' +|p[° is the sum of intensities of the interacting beams. The well known steady state
solutions of Egs.(II.1) for real coupling may be written in the form

Isolnzmz = |S0 :!n M’ IPO «Z)m = Ip() ,2,, Mexp(_.r)v
_ I+ (11.2)
T+ exp(-T)’

where r=l.s‘n/pn|i is the input beam intensity ratio. Equations (I11.2) allow for any sign of T .
Below we will use the notation '=T;, M =G for T >0 (when the signal heam experiences

gainjand '=-T,. M= L [or T <0 (when 1 expeiiences 105s).



Arbitrary complex perturbations about the steady state solution can be separated into purely reul
and purely imaginary contributions and their evolution can be described independently. Below we
restrict ourselves to consideration of purely real perturbations. since they turn out to be more
important for the analysis of the circuits considered here. The time dependent amplitudes are
therefore written in the form

s(x.1) = 5,(x) + Re(8s(x)exp( f1)). -
(1.3

plx.t) = p,(x)+ Re(dp(x)exp(f1)).

where f is a complex frequency.

Linearizing Eqs.(IL.1) with respect to 6s and 8p around the stationary solution (11.2) and solving
the resulting equations results in a transmission matrix, that describes propagation of perturbations
through a medium by coupling their input and output amplitudes

6.s‘ f_(,) 65) (” 3
= - , )
5[7 aut 51) /i"

where the 2 x 2 transmission matrix elements are given by the relations:

. r/2)
T"):ex—p(—- rexp{T"/2)+ex
T AJM p( ) p -

(ln M- F/’)H

»  exp(I'/2 ]
T = XE/— )f[exp )—exp[Hﬂ.(lnM‘r/?-)ﬂ-
. 2
T = exp(l'/ )\[; l—exp(r/2+—l—(lnM—F/2)) .
AVM 1+ (IL.5)
, r/2) 1
o e /2)], r/2+ InM-T/2)|}
z AM Texp 1+ 1 (In )

A=1+rexp(T).
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tigure II.1 The photorefractive flip-flop

There is also a matrix 7'’ describing the propagation of perturbations when a pump beam interacts
with two spatially uncorrelated signal fields.

With the help of these matrices the stability of very general photorefractive circuits may be
analyzed. The details turn out to be lengthy and only a summary of the physical implications is
given below.

The photorefractive flip-flop is shown in Fig. 1.1 [4]. Conditions for existence of spatial
bistability based on steady state considerations were given in [4]. This analvsis also shows the
effect of varying the crystal time constants. The flip-flop has six steady states: both rings off. one
ring on and the other ring off, both rings on equally and both rings on with unequal intensities. It
turns out that all the stationary states, including the flip-flop state, are unstable when 7, >> 1.
So it is necessary to have a fast loss crystal, for the flip-flop to be stable. The same type of
constraint applies in e.g., the bistable ring resonator [1,2] where the off state is unstable when the
loss mechanism is too slow.

A slightly different configuration where the two rings share a common gain volume has also been
analyzed. The shared volume leads to additional competition between the rings and the flip-flop
state 1s now stable. while all other states are unstable, when 7, >> 7... The experimental realization
of the flip-flop [4] resulted in partial sharing of the gain volume between the rings, and had
11, > T(i .

A simplified model of the self-organizing feature extractor based on two coupled single-mode
photorefractive ring oscillators is shown in Fig. 11.2. The device that was experimentally
demonstrated was based on two coupled multi-mode resonators. cach containing an additional
photorefractive crystal that ensured that the multi-mode ring behaved as though it were a sinale
mode ring. In order to make the problem analytically tractable each multi-mode ring with its extra
photorefractive crystal {5 modeled as an empty single mode ring. The set of equations

()SI‘ : (9,),4 -
= ‘L‘,I p * = 'i"r/‘\‘r °
(): ; o (): ; 4




9g I' ¢
T—L+g =— ) s, P, (11.6)
a[ glj 21,; AP_IL
t=1,/1,. L= (s +p)

)

captures the essential dynamics of this system. In (11.6) s, is the field amplitude of

Energy
Transfer

Input
Signals

Output Qutput
Signal Signal

Figure I1.2 Simplified model of a photorefractive feature extractor consisting of two single-mode
resonators with shared gain volume.

signal k in ring i, p, is the field amplitude of the input pump beam in spatial mode j and temporal
mode k., g, is the refractive index grating coupling ring i to pump spatial mode k. 7 is the
photorefractive time constant and /, is the total optical intensity.

These equations are supplemented by the boundary conditions

p(z=0,00= py,, Pn(2=0,0)= pg. Pa(2=0.)=p,(2=0.0=0
5,(0.1)=e s, (1,1), 5,(0.8)= €5, (L1), g,(z.0)=0. (IL.7)

"/ is the reflectivity of ring i and the photorefractive medium has length /.

Here e
We wish to examine the stability of the stationary states of this system when it is driven by two
spatio-temporally distinct signals with similar input intensities. There are four cases to consider: 1)
there is no oscillation, 2) one of the input signals oscillates in one ring, 3) one input signal
oscillates in both rings, and 4) one input signal oscillates in one ring and the other input signal
oscillates in the other ring. The possibility of two input signals oscillating in a single ring need not
be considered since analysis of a single ring resonator pumped by two input signals shows that the
only stationary state corresponds to the stronger input signal oscillating, with the weaker input



signal completely suppressed. (In the degenerate case where the two inputs have the same intensity
a linear combination of both signals may oscillate.)

The details of the linear stability analysis are rather lengthy [8]. It is found that the only stable
solution is the desired state where one signal oscillates in one ring. and the other signal oscillates in
the other ring. This is a stable state, provided the overall gain puts the circuit above threshold. as
long as the lurger input signal picks the ring with lower losses. Otherwise the signals simply
switch rings. The degenerate case where the input signals have equal intensity [29]. and the two
rings have equal losses is somewhat arbitrary since there is a family of stable solutions described
by s,./8,, =~5.,/5,, = const. Numerical studies of the full time dependent set of equations verify
that when random noise is added to the input signals the resulting values of ¢ are uniformly
distributed.

ITII. Spatio-temporal dynamics in photorefractive ring oscillators

The self-imaging ring resonator is a highly degenerate device. Since any transverse electric field
profile. neglecting diffraction, is imaged onto itself after one round trip the eigenmodes of the
empty cavity form a continuous set. In this situation, where the passive optics play only a minor
role in determining the mode structure, the impact of the nonlinear elements comes to the forefront.
The self-imaging ring is therefore an interesting test bed, both for studying the effects of
nonlinearity, and for learning how to use nonlinearity to control the spatio-temporal behavior in the
fesonator.

The single transverse mode ring resonator with photorefractive gain and loss has been shown to
exhibit bistability and self-pulsing [1,2]. The interesting dynamical behavior in
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Fig. III.1 Imaging ring resonator with photorefractive gain and loss. All lenses are f=100 mm with
a spacing of 2f. The gain and loss pumps are from a cw Argon laser, A=514 nm.

this system is due to the competitive interaction of the gain and the loss. On the other hand. in the
imaging resonator with a continuum of transverse modes, (see Fig. II1.1) the interaction of the gain
and the loss assumes a cooperative character in the following sense. Consider first what happens
when only the gain pump is turned on. If the gain pump has a Gaussian profile then the oscillating
mode will also assume a Gaussian profile, in the gain crystal, in order to maximize its overlap with
the gain pump. However, the phase of the oscillating mode is unconstrained since it has no effect
on the energy transfer efficiency in the gain medium. The Fourier transform of a field with
Gaussian intensity profile but random phase is a rather random looking pattern. Now turn on the
loss pump that interacts with this random pattern. When the random pattern contracts to a localized
mode it maximizes its peak intensity and saturates the loss mechanism. There is a limit to how far
the mode will contract, since if it becomes too small its Fourier transform will become too big and
no longer be optimally matched to the gain pump in the conjugate plane. Thus, if the gain pump is
a Gaussian with spot size w_, where w_ = JAf /7 is the confocal mode size of the passive cavity.
and the loss pump is somewhat larger and transversely uniform then the gain and the loss
interactions will




Gain Loss

Fig. 1112, Collapse of the transverse mode structure. The first frame shows the mode protiic
immediately before the loss pump is turned on. The following frames are separated by /30 e,
with the gain plane on the left and the loss plane on the right.

cooperate spatially to from an oscillating mode with Gaussian spot size w Cbu arbitrany Jocation
in the plane of the loss interacion. An experimental recording of this effect v shownan e I
[9].

However. once the mode profile has collapsed it begins to wander about in the transverse plune
[10]. An example of this motion is shown in Fig. 111.3. Depending on the detls of the caviny
alignment. and the gain and loss pump intensities. the spot either dritts to the edge of the avaifable
aperture and disappears before reappearing again in its original position, or else it exevutes o
cvehie motion wholly within the aperture. In the latter case the spot does not move in a closed
circle but tather appears. moves a short distance. and then isappears, betfore repeating it motion
It takes a few seconds for the spot to execute a single traverse across the aperture. The spot will
typically choose a new drift path after about 10 cveles along any given path. The wandering
motion. alternating between paths that are each repeated a few times. continues indefimiely. The
spot motion appears to be determined by the cavity alignment since small adjustments to one of
the resonator mirrors change the spot trajectory noticeably.

9




Fig. HLA Experimental observation of spot motion. The frames were recorded at 00 30 709 and

10 seconds of elapsed time. sarting at the upper left and ending at the lower right,

The spot moton has been simukited by numerical calcutations of the resonator dvnanues [ 21
The optical fiel! and the photorefractive gratings are discretized on a square lattice. We assume no
crossing of the pump and signal beams in the gain or Joss erystals, but retam the axial dependence
of the ficld and gratings in cach crvstal. Thus there i no nonlocal coupling within the ervaads
The transverse couphing which leads to mode collapse arises trom placing the ervstals i spatialiy
conjugate plunes. It the cavity s assumed to be perfectly aligned the spot torms w a location
determimed by the maximum of the inttal seeding. and i~ stationary. Misalignment ot the caviny s
modeled by introducing o phase wedge in the cavity Dy =expi(d v+ v where v v oare
the transverse coordinates and 8.8, characterize the slope of the wedge. Placing the wedge next
to the gam crystal results ina continuous motion of the spot parallel to the wedge gradient
VO -3 a0+ v An analvtical study of the spot motion [21] for the case of one transyerse
dimension predicts that for small cavity misalignment the drift rate 1s

10
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Figure 111.4 Rate of spot motion vs. cavity misalignment as calculated by direct numerical
simulation, For small 6 1 ‘e rate depends iinearly on 8. The actual rate agrees with Eq.(II1.1) to
within about 30%, depending, ~n the values of the resonator parameters.

dx = f—————a——- (HL.I)

dr krin(l /1)
where x is the position of the spot in the loss plane, 7 is the time constant of the gain mediun. /,
is the maximum pump beam intensity and 7 is the maximum oscillating intensity at the entrance
to the gain medium. In deriving Eq. (IIL.1) the time constant of the loss crystal has been put to
zero. In the actual experiment the time constant of the loss crystal was approximately 20 times
shorter than that of the gain crystal, so this is a reasonable approximation. Comparison of Eq.
(IH.1) with the drift rate found from direct numerical simulations is shown in Fig. I11.4. The drift
rate is indeed linearly proportional to & for small 8. It is surprising how small § must be before a
linear dependence of drift rate on cavity misalignment is obtained. This indicates that a higher
order theory, which allows for a nonlinear dependence on 6 may be necessary to get good
agreement between the analytical and numerical descriptions.

It appears clear from the analytical and numerical studies that the motion of the localized mode is a
direct consequence of cavity misalignment. Even if the misalignment is made very small the spot
will continue to move, albeit slowly. In order to use this type of resonator for implementation of a
neuromorphic optical processor we wish to eliminate the spot motion. We have very recently found
a configuration involving a resonator with three photorefractive crystals that eliminates the spot
motion in our computer simulations. On going work will concentrate on experimental verincation
and analytical study o1 this new configuration.

11




IV. Transverse instability of counterpropagating beams

Transverse modulatuonal instability of two counterpropagating beams in nonlinear optical media
has been observed in atomic vapors [13-15], hiquid cryvstals [16.17]. and quite recently n
photorefractive crystals [ 18] The instability manitests itselt in the far ficld by the appearunce ot
conical rings, pairs of spots or a hexagonal array of spots about the counterpropagating heams.
The corresponding intensity modulation in the near field has the characteristuie spatial scade
[ =2m/6 k,. where 8 is the small angle between the generated satelhite beams and the priman
beams. The angle 6 at which the threshold of the absolute instability 1s 4 minimum may be found
for all of the above materials by a linearized analysis of the equations of motion [12.19.20.22-26].
On the other hand. the nature of the nonlinear stage of the instability, the details of the resulting
patterns, and their spatial and temporal stability appear to vary widely among different materials. In
atomic vapors, cones, pairs of spots and hexagons may all be observed depending on the
frequency and intensity of the primary beams. In liquid crystals the instability leads to a stuble
hexagonal pattern. whereas the recent observations in photoretractive media indicate a somew hat
different behavior. Here the hexagonal pattern is well defined. but temporally and spatialiy
unstable. such that it appears as a cone in a time averaged recording. The cones observed in atonue
vapors mity also be due to unstable hexagons although no time resolved data is presently available.
There is some reason to expect this since, as was shown in [15]. the cone may be collapsed mto
hexagon by injection of a weak beam at 6

Although the general nature of the instability in photorefractive media s similar 1o the well known
Kerr nonlincarity case. the details of the instability threshold conditions ditter. This s due to
several differences between the photoref; “tive and Kerr-type nonlinearities. In Kerr-type media
the nonlinear part of the refractive index » is not (or 1s only weakly) dependent on the angle 8
between the interacting waves (see Fig. IV 1) or, equivalently. on the wavevector & =6k of the
grating written by the pumping waves with their sidebands ( £, with F., and B, with B.) and <o
the characteristic angle € is the result of interplay between the Kerr nonlinearity and diftracton.
The nonlinear coupling coefficient (analog of n,) in photorefractive media is strongly dependent on
the value of & and so material properties of the crystal must come into play. imposing their own
characteristic spatial scales. Furthermore. the Kerr nonlinearnity corresponds to a



Nonlinear

Medium
B+/ F/
9 6
B(I Fu
0 0
B_/ FI
P
0 - /
(1)
P \ B, Fa B
/ \
I\I\/V\/\,\
Fu-——) Fu—-——}n))lllt\\(l(—B.,
/\
vy \ I/I /
F+I/ F+l/ \ B-!
(b) (c

Figure TV.1. Transverse instability of counterpropagating beams. a) Geometry of the optical
interaction: (F,.B,) are the incident pump beams while (F,,.B.,) are spontaneously generated
satellites b) transmission gratings couple the beam pairs {(F},.F,,).(B[,.BNE )}. and
{(EJ-F,.).(B“.BH)} . and ¢) reflection gratings couple the beam pairs (F,.B,). {(F(,.B_s).(ﬂ.li.)}.
and {(F,.B,,).(F,-B,)}-

nonlinear change of phase (1, is purely real) whereas the photorefractive nonlinearity is in general
complex corresponding to both amplitude and phase changes. The magnitude of the real part of the
coupling coefficient can be enhanced by applying an external electric field to the photoretractive
crystal, but in general it is impossible to completely eliminate the imaginary part. Also the
dependence of the real and imaginary parts on the value of k& is different. In addition
photorefractive media are characterized by strong amplified incoherent scattering (fanning) which
leads to a dependence of the amplitudes of the primary beams on the axiai coordinate. even in the
linear stage of the instability.

The details of the analysis in photorefractive media depend on whether the instability 1s duce 1o the
formation of transmission or reflection gratings. The interacting waves arc written in the form

F(F .oty = F ()l + F explik 7, — iQn+ F exp(=ik 7 +i€Q n]explik,z — i@y, v
. - ")
B(7 2.ty = B,(2)[1+ B, exptik. 7 —iQn) + B exp(~ik F. +iQ Dlexp(—ik,z - i@,

which leads to the equations of motion

13



(010 + k(P =iT Ry P g8+ 8]

(3f0z - ik, )F =—z—[F +F,+q(B,+B )].
(IV.2)
(/02 - ik, )B., = =i- Zq[F,, +F,+q(B, +B))
(9/0 +ik,)B", = ilL[R, +F +qB,+B)]
+q
for transmission gratings and
o, _. 4
Sl (R Sy 2
o= 1yl+q 0
oB e ]
}f:—l)’ mBm (IV.3)
(8/8'+’L ) [(7‘_}/) »1+7'B‘1+7 B-l]
(0100 =ik ) = =iy =y ) 4y B+ VB
. 1 . - e
(8/&—1k‘/)3.;=-11—;;[7 Fo+y F+{y7 =7}
1

(8/83"’ ikJ)B:l = q[}/-ﬁl + }’F—‘I +(}" - Y)B:x]-

for reflection gratings. In Egs. (IV.2) ¢(z) =|B,(2)/F(z [ k,=k>/2k,. and y(k_ L1 is the

material and fre &uency shift dependent complex coupling coefﬁcxent In(IV.3) y = y(2k,.Q = 0)
and Y =y/1%

The dispersion relationship governing the instability threshold is found by solving Eqs. (IV.2.
IV.3) with the boundary conditions F,,(z=0)=F,(0)=0. B (z=1)=B (H=0. In the case of
transmission gratings Eqs.(IV.2) may be solved in closed form for arbitrary axial variation of
g(z) We find that the dispersion relation is given by

14



(1-A)(1-A4,)-AA, =0,

Ik s‘l __4(z) sin(k,2)
(2%, /: )J.d“ 1+ q(z) sin{k,l)

k
I sinfk,(z-1)]

A sinh[s(z - 1)),

0

A =(2 ygd/s){d;lwm e Y] sinh(sz).
A= (2 o)) e o 70 Sms[ll\nl(/:d;) st -1} v
O e
=[kr-x)]"
For 9= €ONSL. Eqs (IV.4) reduces to
(g+47')+[(s7&,)" = {57k, )|sin(k,1)sinb(s1) + 2cos(k,I)cosh(s!) = 0. (IV.5)

if we impose the restriction of purely real y and € =0 this equation corresponds to the known
results for Kerr media [12.22-26].

Several of the lowest branches found from numerical solution of Eq. (IV.5) are shown in Fig.
IV.2. Taking ¢ = const. is usually not a good approximation in photorefractive media due to the
influence of passive absorption, and beam fanning. The amount of beam fanning may be reduced
by working with narrow beams, although in the transmission grating geometry the beam diameter
cannot be made too small due to the requirement of having at least a few modulation fringes across
the main beams. Numerical solution of Eqs. (IV.4) with ¢(z) = g{0)e"""". where @, =9cm
accounts for passive absorption and fanning as measured mth mm sized beams in a piece of
BaTiO3, shows that the
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Fig. IV.2. Dispersion curves for g(z)=const.: a) focusing branch with Re(y)>0 and b
defocusing branch with Re(y) < 0. The curves are labeled as i) g=1. ii) g=10. and iii) q=100.

— Yl - - - - are(y).

necessary coupling constant for observation of instabilities is increased by about a factor of 5.

The recent experimental observation of the modulational instability in photorefractive media[18]
used a reflection grating geometry. This is advantageous since it is then possible to use very
narrow beams, which reduces fanning losses. Eqgs. (IV.3) describing the reflection grating case are
more complex than those describing transmission gratings and general solutions for q g(z) are
not available. However, by choosing the boundary conditions such that |F, ()] =|B, ()] results in
q«l throu0hout the photorefractive medium since Egs. (IV.3) have the first integral
|Fo(1) [ -|B, (I! = const. for any value of y. Putting g=1 in Egs. (IV.3) results in the
dispersion relationship

cosh(——zf—t—J + cos(s")cos(s?) +

1-iQrt
s}s[(l\” +}: )( yz (l—l_—%ﬁ;j) b;l }m( ) sin(sl) = 0.

where s =(k, +7,/2) -|y' /4 and s P= (kg + (- ‘"‘35;)) ~}* /s . This equation is different
from those derived previously for Kerr media since it includes the redistribution of energy between
the counterpropagating pump beams due to the formation of reflection gratings. Numerical

evaluation of the threshold condition predicted by this equation is in progress [20].

(IV.6)
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